-
Thermal Camera Core
-
Thermal Security Camera
-
Drone Thermal Camera
-
EO IR Systems
-
Thermal Imaging Binoculars
-
Infrared Thermal Camera Module
-
High Resolution Thermal Camera Module
-
Cooled Infrared Detectors
-
Optical Gas Imaging
-
Thermal Camera For Fever Detection
-
Cooled Camera Modules
-
Vehicle Mounted Thermal Camera
-
Integrated Dewar Cooler Assembly
-
Uncooled Infrared Detectors
LWIR Thermal Imaging Module With 640x512 12μM IR Detectors For Thermography
Contact me for free samples and coupons.
Whatsapp:0086 18588475571
Wechat: 0086 18588475571
Skype: sales10@aixton.com
If you have any concern, we provide 24-hour online help.
xResolution | 640x512 | Power Consumption | 0.8W |
---|---|---|---|
Spectral Range | 8~14μm | Pixel Pitch | 12μm |
NETD | <40mK | Frame Rate | 25Hz/30Hz |
High Light | 640x512 IR Detectors Thermal Module,Thermography LWIR Thermal Imaging Module,12um Thermal Imaging Module |
LWIR Thermal Imaging Module With 640x512 12μM Infrared Detectors For Outdoors
TWIN612 thermal module is a new arrival product developed by Global Sensor Technology. It integrates 640×512/12µm ceramic package uncooled infrared detector. With typical NETD<40mk, the TWIN612 thermal module could present clearer, sharper and more detailed image.
With temperature measurement range of -20℃~150℃/0~550℃, accuracy of ±2℃ or ±2% and frame rate up to 30Hz, the thermal module guarantees smooth thermal image and accurate temperature measurement.
The TWIN612 thermal module has the advantages of compact design, light weight structure and power consumption as low as 0.8w. With enhanced image algorithms and temperature measurement function, the TWIN612 thermal module presents more stable images and accurate temperature.
Ceramic packaging process is similar to metal packaging, which is a mature infrared detector packaging technology. Compared with metal packaging, the volume and weight of the packaged detector will be greatly reduced. Thus, the TWIN612 thermal module could be applied to industries that have strict requirements on size, weight and power consumption.
- Mini Size: 25.4mm×25.4mm×35mm
- Light Weight: 25g
- Typical NETD<40mk
- Sharp, Clear Thermal Imaging
- Typical Power Consumption as Low as 0.8W
Model | TWIN612/R |
IR Detector Performance | |
Resolution | 640×512 |
Pixel Size | 12μm |
Spectral Range | 8~14μm |
Typical NETD | <40mK |
Image Processing | |
Frame Rate | 25Hz/30Hz |
Start-up Time | 6s |
Analog Video | PAL/NTSC |
Digital Video | YUV/BT.656/LVDS/USB2.0 |
Image Display | 11 in Total (White Hot/Lava/Ironbow/Aqua/Hot Iron/Medical/Arctic/Rainbow1/Rainbow2/Red Hot/Black Hot) |
Image Algorithm | NUC/3D/2D/DRC/EE |
Electrical Specifications | |
Standard External Interface | 50pin_HRS |
Communication Interface | RS232/USB2.0 |
Supply Voltage | 4~5.5V |
Typical Power Consumption | 0.8W |
Temperature Measurement | |
Operating Temperature Range | -10℃~50℃ |
Temperature Measurement Range | -20℃~150℃, 0℃~550℃ |
Temperature Measurement Accuracy | Greater of ±2℃ or ±2% |
SDK | Windows/Linux; Achieve Video Stream Analysis and Conversion from Gray to Temperature |
Physical Characteristics | |
Dimension (mm) | 25.4×25.4×35 (Without Lens) |
Weight | 25g (Without Lens) |
Environmental Adaptability | |
Operating Temperature | -40℃~+70℃ |
Storage Temperature | -45℃~+85℃ |
Humidity | 5%~95%, non-condensing |
Vibration | 5.35grms, 3 Axis |
Shock | Half Sine Wave, 40g/11ms, 3 Axis, 6 Direction |
Optics | |
Optional Lens | Fixed Athermal: 13mm |
The TWIN612/R thermal imaging module is applied to the field of Thermography, Security Monitoring, UAV Payloads, Robots, Intelligent Hardware, ADAS, Firefighting & Rescue
1. Infrared Detector Resolution
That is, the number of pixels of thermal imaging. The higher resolution means more observation and temperature measurement points, thus smaller target at longer distance can be observed and measured. Usually the resolution of infrared thermal imaging ranges from 256x192, 384x288, 640x512, 800x600, 1024x768, 1280x1024, etc. With higher resolution, the cost of detector will be more.
2. Field of View (FOV)
Field of View (FOV): it refers to the two-dimensional field of view of the object space observed by the optical system of infrared thermal imager. Taking the horizontal FOV as an example, assuming that the detector array size is A×B, the pixel size is d, and the lens focal length is f, then the horizontal FOV angle θ=2×acrtan (A×d/2f).
After the detector array and pixel size are selected, the field of view only changes with the focal length of the optical system: with longer focal length, the field of view will be narrower; with shorter focal length, the field of view will be wider.